本文作者:admin

6年级数学资料|6年级数学上册

admin 2020-10-05 105
6年级数学资料|6年级数学上册摘要: 小学六年级上册人教版数学重要知识点六年级上册数学知识点第一单元位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后...

小学六年级上册人教版数学重要知识点


六年级上册数学知识点

第一单元 位置

1、什么是数对?

——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

( 列 , 行 )

↓ ↓

竖排叫列 横排叫行

(从左往右看)(从下往上看)

(从前往后看)

2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?

2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

例如: × 表示: 求 的 是多少?

9 × 表示: 求9的 是多少?

A × 表示: 求a的 是多少?

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a (b≠0).

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .

注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

附:形如 的分数可折成( )×

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。

6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(六)分数乘法应用题 ——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

“1”× =

例如:求25的 是多少? 列式:25× =15

甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15

注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、( 什么)是(什么 )的 。

( )= ( “1” ) ×

例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?

甲数=乙数× 即25× =15

注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。

(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。

(3)单位“1”的量×分率=分率对应的量

例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?

甲数=乙数 ± 乙数× 即25±25× =25×(1± )=40(或10)

3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

4、什么是速度?

——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间

——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

5、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙

少:(乙-甲)÷乙

第三单元 分数除法

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)

②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)

③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

注:(a±b)÷c=a÷c±b÷c

四、比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20= =12÷20= =0.6 12∶20读作:12比20

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。

(1)、 用比的前项和后项同时除以它们的最大公约数。

(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

5、比和除法、分数的区别:

除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数

比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五、分数除法和比的应用

1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)

2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)

乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)

几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)

(2)甲比乙多(少)几分之几?

A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )

B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )

C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )

D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)

E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)

(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?

方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35

方法二:甲:56× =21 乙:56× =35

例如:已知甲是21,甲、乙的比3∶5,求乙是多少?

方法一:21÷3=7 乙:5×7=35

方法二:甲乙的和21÷ =56 乙:56× =35

方法二:甲÷乙= 乙=甲÷ =21÷ =35

5、画线段图:

(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。

第四单元 圆

一、.圆的特征

1、圆是平面内封闭曲线围成的平面图形,.

2、圆的特征:外形美观,易滚动。

3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= =周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr

注:圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3

4、半圆周长=圆周长一半+直径= ×2πr=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽

所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)

S圆 = πr × r

S圆 = πr×r = πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4

则:S1∶S2∶S3=4∶9∶16

4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)

扇形面积 = πr2× (n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

注:一个圆的半径增加a厘米,周长就增加2πa厘米

一个圆的直径增加b厘米,周长就增加πb 厘米

6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π

7、常用数据

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

第五单元、百分数

一、百分数的意义:表示一个数是另一个数的百分之几。

注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。

百分数的分子可以是小数,分数的分子只以是整数。

注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉“%”。

(2)小数化百分数:小数点向右移动两位,添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数 化 小数:分子除以分母。

二、百分数应用题

1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几

2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几 (甲-乙)÷乙

求乙比甲少百分之几 (甲-乙)÷甲

3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率

4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)

5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣 成数 几分之几 百分之几 小数 通用

八折 八成 十分之八 百分之八十 0.8

八五折 八成五 十分之八点五 百分之八十五 0.85

五折 五成 十分之五 百分之五十 0.5 半价

6、 纳税 缴纳的税款叫做应纳税额。

(应纳税额)÷(总收入)=(税率)

(应纳税额)=(总收入)×(税率)

7、 利率

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息。

(3)利息与本金的比值叫做利率。

利息=本金×利率×时间

税后利息=利息-利息的应纳税额=利息-利息×5%

注:国债和教育储蓄的利息不纳税

8、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几

(2)求甲比乙多(少)百分之几—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50

⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40

⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%

⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%

⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

? 乙比甲少20%,少10,甲是多少?10÷20%=50

? 乙比甲少20%,少10,乙是多少?10÷20%-10=40

? 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

? 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

? 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

? 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40

第六单元、统计

1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、 常用统计图的优点:

(1)、条形统计图直观显示每个数量的多少。

(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

(3)、扇形统计图直观显示部分和总量的关系。

第七单元、数学广角

一、研究中国古代的鸡兔同笼问题。

1、 用表格方式解决有局限性,数目必须小,例:

头数 鸡(只)兔(只) 腿数

35 1 34

35 2 33

35 3 32

……

(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)

2、 用假设法解决

(1) 假如都是兔

(2) 假如都是鸡

(3) 假如它们各抬起一条腿

(4) 假如兔子抬起两条前腿

3、 用代数方法解(一般规律)

注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

二、和尚分馒头

100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?

国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:

一百馒头一百僧,

大僧三个更无争,

小僧三人分一个,

大小和尚各几丁?"

如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?

方法一,用方程解:

解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:

3x + (100-x)=100

x=25

100-25=75人

方法二,鸡兔同笼法:

(1)假设100人全是大和尚,应吃馒头多少个?

3×100=300(个).

(2)这样多吃了几个呢?

300-100=200(个).

(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?

3- = (个)

(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:

小和尚:200÷ =75(人)

大和尚:100-75=25(人)

方法三,分组法:

由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。

这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:

100÷(3+1)=25(组)

大和尚:25×1=25(人)

小和尚:100-25=75(人)或25×3=75(人)

我国古代劳动人民的智慧由此可见一斑。

三、整数、分数、百分数应用题结构类型

(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。

解法:甲数除以乙数

例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)

(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。

解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。

求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量

例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?

180×56 =150

(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。

解法:对应数量÷对应分率=单位“1”

例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?

120÷35 =200(人)

请采纳,谢谢

六年级数学计算题100道及答案


1.3/7 × 49/9 - 4/3

2.8/9 × 15/36 + 1/27

3.12× 5/6 –62616964757a686964616fe78988e69d8331333365636635 2/9 ×3

4.8× 5/4 + 1/4

5.6÷ 3/8 – 3/8 ÷6

6.4/7 × 5/9 + 3/7 × 5/9

7.5/2 -( 3/2 + 4/5 )

8.7/8 + ( 1/8 + 1/9 )

9.9 × 5/6 + 5/6

10.3/4 × 8/9 - 1/3

11.7 × 5/49 + 3/14

12.6 ×( 1/2 + 2/3 )

13.8 × 4/5 + 8 × 11/5

14.31 × 5/6 – 5/6

15.9/7 - ( 2/7 – 10/21 )

16.5/9 × 18 – 14 × 2/7

17.4/5 × 25/16 + 2/3 × 3/4

18.14 × 8/7 – 5/6 × 12/15

19.17/32 – 3/4 × 9/24

20.3 × 2/9 + 1/3

21.5/7 × 3/25 + 3/7

22.3/14 ×× 2/3 + 1/6

23.1/5 × 2/3 + 5/6

24.9/22 + 1/11 ÷ 1/2

25.5/3 × 11/5 + 4/3

26.45 × 2/3 + 1/3 × 15

27.7/19 + 12/19 × 5/6

28.1/4 + 3/4 ÷ 2/3

29.8/7 × 21/16 + 1/2

30.101 × 1/5 – 1/5 × 21

六年级简单的数学题


六年级数学综合测试题库

一、 直接写出计算结果。

34 ×25 = 67 ÷2= 12× 445 = 3÷13 = 65 ÷35 =

56 ÷32 = 27 ×14= 1- 12 × 27 = 6×12 ÷ 14 = 512 - 18 ×23 =

15÷35 = 12 ÷47 = 98 ×8 = 512 ÷10 = 710 ÷45 =

56 ÷6 = 34 - 12 = 38 ×45 = 56 ÷65 = 1÷23 ÷23 =

二、 填空。

(1)15 ×3表示( );3×15 表示( );

35 ÷3表示( )。

(2)25 :3的比值是( ),化成最简的整数比是( )。

(3)甲数是24,乙数是甲数的 13 ,乙数是( );

甲数是24,相当于乙数的 13 ,乙数是( )。

(4)( ):5=9÷( )=15( ) =0.6

(5)49 的倒数是( ),( )与7互为倒数。

(6)在O里填上“<、>或=”

20×45 〇20 12 ×56 〇 35 15 ÷1〇 15

56 ×30 〇30 45 ÷13 〇45 2÷23 〇 2

(7)读一本科技书,每天读它的 16 ,( )天可以读完这本书的 12 。

(8)一根绳子长5米,用去它的 25 以后,又用去25 米,还剩( )米。

(9)本月比上月节约用水 18 ,是把( )看作单位“1”,

本月的用水量是单位“1”的(??——)。

(10)一个数是120,这个数的15 是______。

一个数的15 是120,这个数是______。

一个数的增加15 是120,这个数是______。

(11)甲数是乙数的45 ,乙数比甲数多(——)。

(12)a比b多27 ,单位“1”是( ),则b是a的(——)。

b:a=( ), b比a少(——)

(13)修一条市政公路,每月修115 ,( )月修完,半年修(——)。

(14)一本小说300页,看了115 ,看( )页,剩下( )页。

(15)一本小说,看了115 ,正好是30页,这本书是( )页。

(16)一本小说,看了115 ,剩下28页,这本书是( )页。

(17)90千米比( )米多15 米。90千米比( )少15 。

(18)比180吨少23 吨是( )吨,比180吨多23 是( )吨。

(20)一种文具降价27 是105元,这种原价是( )元。

(21)一种服装先升价110 ,后降价110 ,现价是原价的(——)。

(22)找单位”1”

水果店里梨子重量是苹果的45 ,单位”1”是______,梨子重量:苹果=( : )。

篮球只数的23 是排球只数,单位”1”是_____,排球只数:篮球只数=( : )。

排球只数比篮球只数多13 ,单位”1”是______,排球只数:篮球只数=( : )。

鸭的只数比鸡少14 ,单位”1”是______,鸭的只数:鸡的只数=( : )。

(23)中国体育代表团在第十三届亚运会中获得金牌129块,在第十四届亚运会中获得金牌150块,增加了(——)

(24)分母是10的所有最简真分数的和是( )。

(25)正方体的凌长是23 厘米,它的表面积是( ),体积是( )。

(26)长方形的长是25 厘米,宽是14 厘米,它的周长是( )厘米,面积是( )平方厘米。

(27)梯形的上底是23 分米,下底 45 分米,梯形的面积是( )平方分米。

(29)三角形的底是49 厘米,高是2厘米,三角形的面积是( )平方厘米 。

(30)正方形的周长是45 分米,它的面积是( )平方厘米。

(31)水结成冰后,体积增加110 ,那么水的体积:冰的体积=( : )。

(32)一项工程,甲队独做12天完成任务;乙队独做15天完成任务。

甲乙队的工作效率的比是( ):( )。

(33)一项工程,甲队独做12天完成任务;乙队独做15天完成任务。如果甲乙合做,( )天完成任务。

(34)长方形的长是25 厘米,宽是14 厘米,宽是长的(——);

长比宽长(——);宽比长短(——)。

(35)六(1)班男学生有25人,女生有20人。

女生占全班人数的(——);男生占全班人数的(——);

男生比女生人数多(——);

女生人数比男生多(——)。

三、 判断题。

(1)比的前项和后项都乘以或除以一个数,比值不变。 ( )

(2)甲数是乙数的 27 ,那么乙数是甲数的 72 。 ( )

(3)男生比女生多 25 ,那么女生比男生少 25 。 ( )

(4)5吨的 19 与1吨的 59 重量相同。 ( )

(5)把3米长的钢管平均截成4段,每段长是 14 米。 ( )

四、 选择题。

1)一个零件,甲需要5分钟,乙需要7分钟,丙每分钟做一个零件的 14 ,三人中( )的工效最高。 ①甲 ②乙 ③丙

2)在比中前项,后项是( )的比,是最简整数比。

① 质数 ②互质数 ③自然数

3)1吨菜籽可榨油 15 吨,要榨3吨菜油,需要菜籽( )。

①15吨 ② 35 吨 ③ 115 吨

4)一项工程,甲乙两队合作10天完成,甲队单独做要15天完成,

算式“110 ―115 ”表示的是( )

①甲队工效 ②乙队工效 ③两队工效差

5)下面的计算结果最大的是( )

①3.6×(1+14 ) ②3.6÷(1+14 ) ③3.6÷14

五、 计算题,下面各题,怎样算简便就怎样算。

(1)9-920 ÷9 (2) 712 ×37 ×56

(3)2.4-2.4×47 ― 37 (4) 49 ÷25 +59 ÷25

(5)3×(215 +112 )-25 (6)15 ÷[(23 +15 )×115 ]

(7)2006×92005 (8)49 ×25 +59 ×25

(9)15÷(215 +112 ) (10) 2 -613 ÷926 -23

(11)79 ÷115 +29 ×511 (12)13 ÷(23 -25 )×35

2.化简下面各比。

12 :21 16284 120 :15

58 : 2 0.25 :1 3 :0.5

8:12 0.25:0.45 2厘米:2千米

15分:1小时 0.2千克:100克 25毫升:25生

3、解方程:

12 x+34 x=1 x-14 x= 12 23 x-5×14 = 14

12 +34 x=56 2-14 x= 12 23 x-14 x= 14

x+14 x= 65 23 x=14 x +14 x-12 x -14 x=12

六、 文字题。

(1) 一个数的 57 是 12 ,它的 23 是多少?

(2) 比一个数多13 是60,求这个数。

(3)比一个数少13 是60,求这个数

(4)13 的 34 是一个数的 59 ,这个数是多少?

(5)2加上一个数的 13 恰好与 718 同样多,求这个数?

(6)比123米多13 是多少?

七、 应用题:

1.一个商店运来一批蔬菜,卖出 25 ,还剩440千克,这批蔬菜共有多少千克?

2.一套西装的裤子是180元,其中裤子的价格是上衣的 45 ,上衣价格是多少元?

3.一套西装180元,其中裤子的价格是上衣的 45 ,上衣和裤子的价格各是多少元?

4.一套西装180元,裤子的价格比上衣便宜15 ,上衣和裤子的价格各是多少元?

5.平坝村去年种西瓜子150公顷,今年比去年多种 13 ,今年种瓜多少公顷?

6.两辆汽车同时从甲乙两地相对开出,一辆汽车从甲地开往乙地要4小时,另一辆汽车从乙地开往甲地需要6小时,经过几小时两车相遇?

7.六年级一班有三好学生4人,占本班人数的 19 ,六年级一班学生人数是六年级总人数的 314 ,六年级有多少学生?

8.一件工程,甲队单独做要8天完成,乙队单独做要12天完成。两队合做这件工程的一半,需要几天?

9. 四季鲜果品店运来14筐梨,每筐65千克,还运来16筐苹果,每筐58千克.运来的梨和苹果共多少千克?

10.一次,A,B,C三人合乘一辆出租车,大家商定,出租车费一定要合理分摊。A在全程三分之一处下车,到三分之二处B也下了车,最后C一人坐到终点站,付车费90元,他们三人如何承担车费比较合理?

11. 一个工厂由于采用新工艺,现在每件产品成本是37.4元,比原来降低了15%,原来每件成本多少元?(用方程解)

12商店运来三种水果,苹果的重量是橘子的115 ,橘子的重量是鸭梨的112 。如果运来的苹果有480千克,运来的鸭梨有多少千克?

13、六年级有三好学生28人,是六年级学生人数的16 。六年级学生人数占全校学生人数的29 。全校有学生多少人?

14、公园里有芍药花20盆,是菊花盆树的14 ,菊花盆数又是月季花盆数的23 。公园里有月季花多少盆?

15、停车场停着16辆面包车,是小轿车的23 ,而停的摩托车又是小轿车的16 。停车场停着多少辆摩托车?

16、某市市内固定电话以分钟为单位计时收费,6分钟内收费情况如下表:

通话时间(分) 1 2 3 4 5 6 ……

收费(元) 0.30 0.30 0.30 0.50 0.70 0.90 ……

(1)你能从上表中得出该市市内电话的收费标准吗?

(2)按这样的收费标准,小丽打了10分钟市内固定电话,应付多少元?

17、一个蓄水池,装有甲、乙、丙三个进水管,单开甲管45分钟注满,单开乙管60分钟注满,单开丙管90分钟注满.如果三管一齐开放,几分钟可以注满全池?

18、一种液体饮料采用长方体塑封纸盒密封包装。从外面量盒子长6厘米,宽4厘米,高10厘米。盒面注明“净含量:240毫升”。请分析该项说明是否存在虚假。

19、实验小学四年级有120人参加数学开放题竞赛。获奖人数占总人数的45 ,而获奖人数中的 14 是女生。获奖的男生占总人数的几分之几?

20、商店同时卖出两台洗衣机,每台2400元,其中一台比进价高15 ,另

一台比进价低15 。总的来看商店是赚钱还是赔钱?

21.一项工程,甲队独做12天完成任务;乙队独做15天完成任务。如果甲乙合做,几天完成工程的34 ?

22.一项工程,甲队独做12天完成任务;乙队独做15天完成任务。乙先做5天后余下的由甲完成,多少天做完?

23.一项工程,甲队独做12天完成任务;乙队独做15天完成任务。如果甲乙合做3天后由乙独做,多少天完成任务?

六年级数学复习题

姓名

平均数应用题

1、 王红看一本文艺书,前6天每天看25页,以后每天看50页,又经过4天正好看完。平均每天看多少页?

2、 某钢厂四、五月份各产钢8200吨,六月分产钢9080吨,第二季度平均每天产钢多少吨?

3、 一辆汽车以每小时40千米的速度,从甲地到乙地用了3小时,返回使用了4小时,求这辆汽车往返甲乙两地的平均速度?

4、 五年级开展植树活动,一般比二班少植13棵,一班有45人,平均每人植7棵,二班有41人,平均每人植数多少棵?

5、 某厂前3天生产170个零件,后5天生产930各零件,这个厂平均每天生产多少个零件?

6、 某车间有两个班,一班有8名工人,平均每人做84个零件,二班有6名工人共做588个零件,这个车间平均每人做多少个零件?

7、 从甲地到乙地240千米,一辆汽车从甲地到乙地的速度为60千米,返回时的速度为40千米。求这个人的平均速度?

8、 张强期终考试,语文、数学的平均分是93分,加上英语三门的平均分是95分,张强英语考了多少分?

9、 五年级有两个班采集树种,一班34人,共采集98千克,二班36人,共采集112千克。两班合计平均每人采集树种多少千克?

六年级应用题90道


1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?

2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?

3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?

4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?

5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?

6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?

7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?

8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?

9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?

10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?

11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?

12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?

13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?

14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?

15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?

16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?

17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?

18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?

19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?

20、电视机厂今年计划比去年增产2/5。去年生产电视机2万台,今年计划增产多少台

21、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米 ?

22、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?

23、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?

24、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?

25、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米?

26、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?

27、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?

28、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?

29、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?

30、甲每小时行驶9千米,乙每小时行驶7千米。两者在相距6千米的两地同时向背而行,几小时后相距150千米?

31、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?

32、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?

33、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?

34、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相距4千米,再经过多长时间相遇?

35、甲、乙两车分别从a b两地开出 甲车每小时行50千米 乙车每小时行40千米 甲车比乙车早1小时到 两地相距多少?

36、两辆车从甲乙两地同时相对开出,4时相遇。慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?

37、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。A、B两地的最短距离多少米?最长距离多少米?

38、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?

39、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?

40、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?

41、甲乙两车分别从A,B两地同时出发相向而行,甲每小时行80千米,乙每小时行全程的百分之十,当乙行到全程的5/8时,甲再行全程的1/6可到达B地。求A,B两地相距多少千米?

42、甲乙两辆汽车同时从两地相对开出,甲车每小时行驶40千米,乙车每小时行驶45千米。两车相遇时,乙车离中点20千米。两地相距多少千米?

43、甲乙两人分别在A、B两地同时相向而行,与E处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走,甲和乙分别到达B和A后立即折返,仍在E处相遇。已知甲每分钟走60米,乙每分钟走80米,则A和B两地相距多少米?

44、甲乙两列火车同时从AB两地相对开出,相遇时,甲.乙两车未行的路程比为4:5,已知乙车每小时行72千米,甲车行完全程要10小时,问AB两地相距多少千米?

45、甲乙两人分别以每小时4千米和每小时5千米的速度从A、B两地相向而行,相遇后二人继续往前走,如果甲从相遇点到达B地又行2小时,A、B两地相距多少千米?

46、客货两车同时从甲、乙两地相对开出,途中相遇后继续前进,各到达对方出发地后立即返回,途中第二次相遇,两次相遇地点间相距120千米客车每小时行60千米,货车每小时行48千米,甲乙两地相距多少千米?

47、一辆客车和一辆货车同时从A,B两地相对开出,5小时相遇,相遇后两车又各自继续向前行驶3小时,这时客车离B地还有180千米,货车离A地还有210千米,AB两地相距多少千米?

48、甲乙由AB两地相向出发,甲速是乙速的4/5,甲乙到达B,A地后,向AB相向返回,且甲速提高1/4乙速提高1/3,已知甲乙两次相遇点相距34km,求AB两地间距离?

49、小明5点多起床一看钟,6字恰好在时针和分针的正中间(即两针到6的距离相等),这时是5点几分?

50、一艘游船在长江上航行,从A港口到B港口需航行3小时,回程需要4小时30分钟,请问一只空桶只靠水的流动而漂移,走完同样长的距离,需用几小时?

51.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。两人原来各有多少钱?书多少钱?

52.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?

53.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时 ?

54.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?

55.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?

56.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?

57.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?

58.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?

59.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?

60。一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?

61.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?

62.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?

63.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?

64.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?

65.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?

66.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?

67.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?

68.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?

69.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?

70.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?

71.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?

72.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?

73.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?

74.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.

75.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.

76.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?

77.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.

78.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.

这个班的男生和女生各有多少人..

79.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?

80.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?

81.五、六年级只有学生175人。分成三组参加活动。一、二两组的人数比是5:4,第三组有67人,第一、二两组各有多少人?

82.某校有学生465人,其中女生的2/3比男生的4/5少20人。男·女各个多少?

83.一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?

84.一块地,长和宽的比是8:5,长比宽多24米。这块地有多少平方米?

85.如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?

86.饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?

87.小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?

88.三个平均数为8.4,其中第一个数是9.2,第二个数比第三个数少0.8,第三个数是什么

89.有两根绳子,第一根绳子的长度是第二根的1.5倍,第二根比第一根短3米,两根绳子各长多少米?

90.工程队修一条路,已修好的长度与剩下的比是4:5,若再修25米就恰好修到了这条路的中点,这条路全长多少米?

六年级数学下册竞赛题及答案


必背定义定理公式

体积和表面积

三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a2

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

正方体的表面积=棱长×棱长×6 公式: S=6a2

长方体的体积=长×宽×高 公式:V = abh

长方体(或正方体)的体积=底面积×高 公式:V = abh

正方体的体积=棱长×棱长×棱长 公式:V = a3

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

算术

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a × b = b × a

4、乘法结合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法: 被除数=商×除数+余数

方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

代数: 代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

分数

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

数量关系计算公式

单价×数量=总价 2、单产量×数量=总产量

速度×时间=路程 4、工效×时间=工作总量

加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

长度单位:

1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

面积单位:

1平方千米=100公顷 1公顷=10000平方米

1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

1亩=666.666平方米。

体积单位

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1升=1立方分米=1000毫升 1毫升=1立方厘米

重量单位

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

比例的基本性质:在比例里,两外项之积等于两内项之积。

解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y

百分数

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

要学会把小数化成分数和把分数化成小数的化发。

倍数与约数

最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。

通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。

最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

倍数特征:

2的倍数的特征:各位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:各位是0,5。

4(或25)的倍数的特征:末2位是4(或25)的倍数。

8(或125)的倍数的特征:末3位是8(或125)的倍数。

7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。

17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。

19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。

23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。

倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

互质关系的两个数,最大公约数为1,最小公倍数为乘积。

两个数分别除以他们的最大公约数,所得商互质。

两个数的与最小公倍数的乘积等于这两个数的乘积。

两个数的公约数一定是这两个数最大公约数的约数。

1既不是质数也不是合数。

用6去除大于3的质数,结果一定是1或5。

奇数与偶数

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数

偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数

相临两个自然数之和为奇数,相临自然数之积为偶数。

如果乘式中有一个数为偶数,那么乘积一定是偶数。

奇数≠偶数

整除

如果c|a, c|b,那么c|(a±b)

如果,那么b|a, c|a

如果b|a, c|a,且(b,c)=1, 那么bc|a

如果c|b, b|a, 那么c|a

小数

自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

纯小数:个位是0的小数。

带小数:各位大于0的小数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654

无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

利润

利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年考试说明:本张试卷共15题,满分120分,答题时间90分钟。

一、填空题:

1、一个两位数,用它除58余2,除73余3,除85余1,这个两位数是14.

2、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除。”那么先后填入的3个数字之和是19。

3、分数 中的a是一个自然数,为了使这个分数成为可约分数, a最小是11.

4、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是___________。

5、一个工人将零件装进两种盒子中,每个大盒子装12只零件,每个小盒子装5只零件,恰好装完.如果零件一共是99只,盒子个数大于10,这两种盒子分别有8、5个。

6、将进货的单价为40元的商品按50元售出时,每个的利润是10元,但只能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个.为了赚得最多的利润,售价应定为 元。

7、两个杯中分别装有浓度40%与10%的食盐水,倒在一起后浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克。

8、某时刻钟表时针在10点到11点之间,这时刻再过6分钟后分针和这个时刻的3分钟前时针正好方向相反,在一条直线上,那么钟表在这个时刻表示的时间是 。

9、今年,祖父的年龄是小明的年龄的6倍。几年后,祖父的年龄将是小明的年龄的5倍。又过几年以后,祖父的年龄将是小明的年龄的4倍。求:祖父今年是多少岁?

10、摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C市到这里的二分之一,就到达目的地了.那么A,B两市相距是 千米。

二、解答题:

11、如右图,AD、BE、CF把△ABC分成六个小三角形,其中四个小三角形的面积已在图上标明,试求△ABC的面积.(单位:平方厘米)

12、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元。用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?乙种卡每张多少钱?

13、自动扶梯以匀速由下往上行驶,两个性急的孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走1梯级,女孩每3秒钟走2梯级。结果男孩用50秒到达楼上,女孩用60秒到达楼上。该扶梯共有多少级?

14、一个车间计划用5天完成加工一批零件的任务,第一天加工了这批零件的 多120个,第二天加工了剩下的 少150个,第三天加工了剩下的 多80个,第四天加工了剩下的 少20个,第五天加工了最后的1800个.这批零件总数有多少个

15、甲、乙两车分别同时从 、 两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理2.5小时后才继续行驶.因此,从出发到相遇经过7.5小时.那么,甲车从 城到 城共有多少小时?

利率。一月的利息与本金的比值叫做月利率。

小学六年级数学期中测试题

班级: 姓名: 等级:

一、填空。

1、0.7÷5 = 7:( ) = =( )%。

2、5A=4B(A、B不等于0)。A:B=( ):( )。

3、 : 化成最简整数比是( )。

4、如果 = ,那么a和b成( )比例关系。

5、底面直径和高都是6分米的圆柱的体积是( )。

6、一个圆柱的底面半径是5米,体积是157立方米,它的高是( )米。

7、在一个比例里,两个内项互为倒数,一个外项是 ,另一个外项是( )。

8、一块长方形的地,长75米,宽30米,用 的比例尺把它画在图纸上,长画( ),宽画( )。

9、一个圆柱的底面半径是2厘米,高是2厘米,它的侧面展开图是( )形,这个图形的周长是( )厘米,面积是( )平方厘米。

10、 :8的比值是( ),如果再写一个比与它组成的比例,这个比例可以是( )。

11、已知A、B、C三种量的关系是A÷B=C,如果A一定,那么B和C成( )比例关系,如果C一定,A和B成( )比例关系。

12、六年级数学竞赛及格人数占不及格人数的 ,这次竞赛六年级同学的及格率是( )。

13、被减数、减数与差的和是40,减数与差的比是3:2,被减数是( ),减数是( )。

14、一种盐水,按盐和水1:100配制而成。现要配制这种盐水8008克,需要盐( )千克。

15、一个比例的两个外项分别是5和6,它们的比值是3,这个比例是( )。

16、在比例尺是1:4000000的中国地图上,量得两地的距离是30厘米,这两地的实际距离是( )千米。

17、( )统计图不但能表示出数量的多少,还能清楚的表示出数量增减变化情况。

18、长度一定的铁丝,平均分成若干段,每段的长度和截的段数成( )比例。

二、选择。

1、下面各比,能与 : 组成比例的是( )。

①3:4 ②4:3 ③ : ④ :3

2、把1克盐放入100克水中,盐和盐水的比是( )。

①100:101 ②1:101 ③1:99 ④1:100

3、在比例里,两个外项的积一定,两个内项成( )。

①正比例 ②反比例 ③不成比例 ④无法判断

4、现有三个数9、3、 ,从下面选( )就可以组成比例。

① ② ④4 ④2

5、解比例 =2:1,χ=( )。

①6 ②1.5 ③0.7 ④9

6、互为倒数的两个数,它们一定成( )。

①正比例 ②反比例 ③不成比例 ④无法判断

7、小王的身高与体重成( )。

①正比例 ②反比例 ③不成比例 ④无法判断

8、小圆的半径是2厘米,大圆的半径是3厘米,小圆和大圆面积的比是( )。

①2:3 ②3:2 ③4:9 ④9:4

9、一项工程,已经完成的与这项工程的比是3:5,还剩这项工程的( )。

①60% ②40% ③20% ④166.6%

10、图上距离是3厘米,实际距离是1.5毫米,比例尺是( )。

①1:20 ②1:2 ③1:200 ④20:1

11、全班人数一定,出席人数和缺席人数成( )。

①正比例 ②反比例 ③不成比例 ④无法判断

12、一个圆柱,如果高不变,底面积扩大3倍,它的体积扩大( )。

①3倍 ②6倍 ③9倍 ④27倍

三、判断。

1、订阅《小火炬》的总钱数和订的份数成正比例。 ( )

2、制作复式条形统计图要用到图例。( )

3、比例尺是 ,图上1厘米表示实际距离20千米。 ( )

4、全班有55名学生,男、女生人数的比是5:6,那么这个班有30名男生。( )。

5、两个圆柱的侧面积相等,它们的底面周长也相等。 ( )

6、在比例中,两个外项的积是10 一个内项是5,另一个内项也是5。( )

7、 =B,那么A和B成反比例。 ( )

8、圆的周长和直径一定成正比例。 ( )

四、解比例。

= : = :χ =

40:χ=2.5:15 :χ=5:16 : =20:χ

五、根据下列数据,算出各班参加竞赛成绩的及格率,再制成统计表。

六(1)班16人,及格12人; 六(2)班15人,及格13人;

六(3)班11人,及格8人。

42回答者: xyywendy - 助理 二级 4-10 20:30

我来评论>> 相关内容

求份初一下册语文试卷。

2009年六年级语文上册期中考试的作文是什麽

2009年六年级语文上册期中考试作文

09年北京海淀区初中第二学期期中考试是在什么时间?...

初二期中考试题目 时间09年1月14日

更多关于人教版六年级数学下册期中考试试卷的问题>>

查看同主题问题:期中考试 试卷 人教版 小学

其他回答 共 4 条

大斗法地方撒zcjklsnfdjklshnjlkfhnzljfsdfhlsdkog

回答者: 相相臭臭 - 试用期 一级 4-9 18:33

好像没说几年级啊?再不行书店一定有啊!

回答者: 快快乐乐6天使 - 经理 五级 4-9 18:38

一册数学试题

一、填空(共30分,每空1分)

1、2的分数单位是( ),它含有( )个这样的分数单位,它在加上( )这样的分数单位就成为最小的合数。

2、( )决定圆的位置,( )决定圆的大小。

3、正方体的棱长12厘米,,如果棱长扩大2倍,则它的棱长之和扩大( )倍, 它的体积会扩大( )倍,表面积会扩大( )倍。

4、我校六年级一班去西湖坐船游玩,每船8人则会余下4人,如果每船坐9人,则余1只船,该班共有( )人,共有( )只船。

5、7×表示( ),×7表示( )。

6、鸡兔同笼,共32个头,102只脚,问有( )只鸡,( )只兔。

7、广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要( )秒。

8、=( )%=( ):( )==( )(小数)

9、甲、乙两数的比5:8,甲数比乙数少( )%,乙数比甲数多( )%。

10、一个数增加它的50%是60,这个数是( )。

11、甲比乙少,乙比丙多25%,甲是丙的( )%

12、一辆汽车从甲地到乙地,去时用5小时,返回时用4小时,去时的速度是返回时速度的( )% 。

13、在2:3 中,如果前项加上6,要使比值不变,后项加上( )。

14、甲数的等于乙数的,甲数比乙数多12 ,甲乙两数的和是( )。

15甲数比乙数多,则乙数比甲数少( )。

16 、把米长的绳子平均分成3段,每段长是全长的( )。

二、选择题(10分)

1、在含糖25% 的糖水中,糖与水的比是( )。

①1:3 ②1:4 ③1:5

2、在下面三题中,结果最大的算式是( )

①1999÷ ② 1999× ③1999×

3、甲数与乙数的比等于6:5 ,那么甲数的等于乙数的( )。

① ② ③ ④

4、一个圆环,它的外圆直径是内圆直径的2倍,这个圆环的面积( )。

①比内圆面积大 ②比内圆面积小 ③与内圆面积相等

5被减数比差多125% ,减数是被减数的( )。

① ② ③ ④

四 求未知数X(8分)

X-5X%=17.5 7X+5×0.7=8

3X÷=48 40-X=3

五 图形题(10分)

1求圆的面积(如图)

2 求阴影部分面积(单位:厘米)

六 应用题(30分)

1 一化肥厂生产一批化肥,分三次运出,第一次运出总数的还多200吨,第二次运出是第一次的,第三次运出450吨,这批化肥共有多少吨

2一项工程.甲工人单独完成需要12天,甲乙二人合作8天就可以完成,如让乙单独完成需要多少天

3 商店运来桔子,苹果和梨一共320千克,桔子和苹果的比是5:6.梨的重量是苹果的,桔子比梨多多少千克

4 一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米

5水结成冰后,体积增加,现有一块冰,体积是2立方分米,融化后的体积是多少

6 一桶油连桶重23千克,用去油的50%以后,称得连桶重是12千克,问桶中原来共有油多少千克桶重多少千克

回答者: duliduli888228 - 门吏 三级 4-9 18:46

一、填空(共30分,每空1分)

1、2的分数单位是( ),它含有( )个这样的分数单位,它在加上( )这样的分数单位就成为最小的合数。

2、( )决定圆的位置,( )决定圆的大小。

3、正方体的棱长12厘米,,如果棱长扩大2倍,则它的棱长之和扩大( )倍, 它的体积会扩大( )倍,表面积会扩大( )倍。

4、我校六年级一班去西湖坐船游玩,每船8人则会余下4人,如果每船坐9人,则余1只船,该班共有( )人,共有( )只船。

5、7×表示( ),×7表示( )。

6、鸡兔同笼,共32个头,102只脚,问有( )只鸡,( )只兔。

7、广场上的大钟5时敲响5下,8秒敲完,12时敲响12下,需要( )秒。

8、=( )%=( ):( )==( )(小数)

9、甲、乙两数的比5:8,甲数比乙数少( )%,乙数比甲数多( )%。

10、一个数增加它的50%是60,这个数是( )。

11、甲比乙少,乙比丙多25%,甲是丙的( )%

12、一辆汽车从甲地到乙地,去时用5小时,返回时用4小时,去时的速度是返回时速度的( )% 。

13、在2:3 中,如果前项加上6,要使比值不变,后项加上( )。

14、甲数的等于乙数的,甲数比乙数多12 ,甲乙两数的和是( )。

15甲数比乙数多,则乙数比甲数少( )。

16 、把米长的绳子平均分成3段,每段长是全长的( )。

四 求未知数X(8分)

X-5X%=17.5 7X+5×0.7=8

3X÷=48 40-X=3

五 图形题(10分)

1求圆的面积(如图)

2 求阴影部分面积(单位:厘米)

六 应用题(30分)

1 一化肥厂生产一批化肥,分三次运出,第一次运出总数的还多200吨,第二次运出是第一次的,第三次运出450吨,这批化肥共有多少吨

2一项工程.甲工人单独完成需要12天,甲乙二人合作8天就可以完成,如让乙单独完成需要多少天

3 商店运来桔子,苹果和梨一共320千克,桔子和苹果的比是5:6.梨的重量是苹果的,桔子比梨多多少千克

4 一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米

5水结成冰后,体积增加,现有一块冰,体积是2立方分米,融化后的体积是多少

6 一桶油连桶重23千克,用去油的50%以后,称得连桶重是12千克,问桶中原来共有油多少千克桶重多少千克

六年级数学应用题300道,要带答案的!


1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

还要运x次才能完

29.5-3*4=2.5x

17.5=2.5x

x=7

还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

它的高是x米

x(7+11)=90*2

18x=180

x=10

它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

这9天中平均每天生产x个

9x+908=5408

9x=4500

x=500

这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

乙每小时行x千米

3(45+x)+17=272

3(45+x)=255

45+x=85

x=40

乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

平均成绩是x分

40*87.1+42x=85*82

3484+42x=6970

42x=3486

x=83

平均成绩是83分

1、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

平均每箱x盒

10x=250+550

10x=800

x=80

平均每箱80盒

2、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

平均每组x人

5x+80=200

5x=160

x=32

平均每组32人

3、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

食堂运来面粉x千克

3x-30=150

3x=180

x=60

食堂运来面粉60千克

4、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

平均每行梨树有x棵

6x-52=20

6x=72

x=12

平均每行梨树有12棵

5、一块三角形地的面积是840平方米,底是140米,高是多少米?

高是x米

140x=840*2

140x=1680

x=12

高是12米

1、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

每件儿童衣服用布x米

16x+20*2.4=72

16x=72-48

16x=24

x=1.5

每件儿童衣服用布1.5米

2、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

女儿今年x岁

30=6(x-3)

6x-18=30

6x=48

x=8

女儿今年8岁

1、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

需要x时间

50x=40x+80

10x=80

x=8

需要8时间

1、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

苹果x

3x+2(x-0.5)=15

5x=16

x=3.2

苹果:3.2

梨:2.7

2、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

甲x小时到达中点

50x=40(x+1)

10x=40

x=4

甲4小时到达中点

3、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

乙的速度x

2(x+15)+4x=60

2x+30+4x=60

6x=30

x=5

乙的速度5

1.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

原来两根绳子各长x米

3(x-15)+3=x

3x-45+3=x

2x=42

x=21

原来两根绳子各长21米

2.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

每只篮球x

7x+10x/3=248

21x+10x=744

31x=744

x=24

每只篮球:24

每只足球:8

~~~~~~~~~ 对不起 有点少(*^__^*) 嘻嘻……

小学六年级数学应用题


某次数学竞赛设一、二、三等奖。已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5 : 6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍。

那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?

答案:设:甲校有6n人

①②==>已校有5n人

③==>甲已两校共有2.2n人获二等奖

④==>甲校获三等奖的人数为3n

③⑤==>甲校获二等奖:1.8n人 乙校获二等奖:0.4n人

由上述条件可得甲校获一等奖:6n-1.8n-3n=1.2n

①==>已校获一等奖的有1.2n人

1.2n/5n=24%

六年级数学计算题100道及答案


1.3/7 × 49/9 - 4/3

2.8/9 × 15/36 + 1/27

3.12× 5/6 –62616964757a686964616fe78988e69d8331333365636635 2/9 ×3

4.8× 5/4 + 1/4

5.6÷ 3/8 – 3/8 ÷6

6.4/7 × 5/9 + 3/7 × 5/9

7.5/2 -( 3/2 + 4/5 )

8.7/8 + ( 1/8 + 1/9 )

9.9 × 5/6 + 5/6

10.3/4 × 8/9 - 1/3

11.7 × 5/49 + 3/14

12.6 ×( 1/2 + 2/3 )

13.8 × 4/5 + 8 × 11/5

14.31 × 5/6 – 5/6

15.9/7 - ( 2/7 – 10/21 )

16.5/9 × 18 – 14 × 2/7

17.4/5 × 25/16 + 2/3 × 3/4

18.14 × 8/7 – 5/6 × 12/15

19.17/32 – 3/4 × 9/24

20.3 × 2/9 + 1/3

21.5/7 × 3/25 + 3/7

22.3/14 ×× 2/3 + 1/6

23.1/5 × 2/3 + 5/6

24.9/22 + 1/11 ÷ 1/2

25.5/3 × 11/5 + 4/3

26.45 × 2/3 + 1/3 × 15

27.7/19 + 12/19 × 5/6

28.1/4 + 3/4 ÷ 2/3

29.8/7 × 21/16 + 1/2

30.101 × 1/5 – 1/5 × 21

六年级简便计算题100道,要有答案和过程


0.4×62616964757a686964616fe58685e5aeb931333339663333125×25×0.8

=(0.4×25)×(125×0.8)

=10×100=1000

1.25×(8+10)

=1.25×8+1.25×10

=10+12.5=22.5

9123-(123+8.8)

=9123-123-8.8

=9000-8.8

=8991.2

1.24×8.3+8.3×1.76

=8.3×(1.24+1.76)

=8.3×3=24.9

9999×1001

=9999×(1000+1)

=9999×1000+9999×1

=10008999

14.8×6.3-6.3×6.5+8.3×3.7

=(14.8-6.5)×6.3+8.3×3.7

=8.3×6.3+8.3×3.7

8.3×(6.3+3.7)

=8.3×10

=83

1.24+0.78+8.76

=(1.24+8.76)+0.78

=10+0.78

=10.78

933-157-43

=933-(157+43)

=933-200

=733

4821-998

=4821-1000+2

=3823

I32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

=100000

9048÷268

=(2600+2600+2600+1248)÷26

=2600÷26+2600÷26+2600÷26+1248÷269

=100+100+100+48

=348

2881÷ 43

=(1290+1591)÷ 434

=1290÷43+1591÷43

=30+37

3.2×42.3×3.75-12.5×0.423×16

=3.2×42.3×3.75-1.25×42.3×1.6

=42.3×(3.2×3.75-1.25×1.6)

=42.3×(4×0.8×3.75-1.25×4×0.4)

=42.3×(4×0.4×2×3.75-1.25×4×0.4)

=42.3×(4x0.4x7.5-1.25x4x0.4)

=42.3×[4×0.4×(7.5-1.25)]

=42.3×[4×0.4×6.25]

=42.3×(4×2.5)

=4237

1.8+18÷1.5-0.5×0.3

=1.8+12-0.15

=13.8-0.15

=13.65

6.5×8+3.5×8-47

=52+28-47

=80-47

(80-9.8)×5分之2-1.32

=70.2X2/5-1.32

=28.08-1.32

=26.76

8×7分之4÷[1÷(3.2-2.95)]

=8×4/7÷[1÷0.25]

=8×4/7÷4

=8/7

2700×(506-499)÷900

=2700×7÷900

=18900÷900

=21

33.02-(148.4-90.85)÷2.5

=33.02-57.55÷2.5

=33.02-23.02

=10

(1÷1-1)÷5.1

=(1-1)÷5.1

=0÷5.1

=0

18.1+(3-0.299÷0.23)×1

=18.1+1.7×1

=18.1+1.7

=19.8

3.42×5.7+4.3×3.42 8.75×11-8.75 7.42×20.1

5.9×2.7+0.59×73 0.358×14.7+35.8×0.853

2.7×3.014 0.847×35 0.079×0.23

小学六年级数学计算题大全(附答案)


六年级数学应用题1

一、分数的应用题

  1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

  2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?

  3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?

  4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

  5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

  6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?

  7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

  8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?

  9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

六年级数学应用题2

二、比的应用题

  1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?

  2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?

  3、 一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?

  4、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?

  5、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?

  6、 做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?

  7、 小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?

  8、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

六年级数学应用题3

三、百分数的应用题

  1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?

  2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?

  3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?

  4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?

  5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?

  6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?

  6、比5分之2吨少20%是( )吨,( )吨的30%是60吨。

  7、一本200页的书,读了20%,还剩下( )页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是( )。

  8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?

  9、 张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?

  10、 小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?

  11、 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。

六年级数学应用题4

四、圆的应用题

  1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

  2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?

  3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

  4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

  5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

  6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

  7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?

  8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?

  9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?

六年级数学应用题5

1、救生员和游客一共有56人,每个橡皮艇上有上名救生员和7名游客。一共有多少名游客?多少名救生员?

  2、王伯伯家里的菜地一共有800平方米,准备用 种西红柿。剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?

  3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?

  4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。这个三角形三条边各是多少厘米?

  5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?

  6、修路队要修一条长432米的公路,已经修好了全长的 ,剩余的任务按5︰4分给甲、乙两个修路队。两个修路队各要修多少米?

  7、在"学雷锋"活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。五、六年级同学各做好事多少件?

  8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?

  9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?

  10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)

  11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?

  12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?

  13、一个圆形牛栏的半径是15厘米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?

  14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?

  15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?

  17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张?

  18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?

  19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?

  20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。

六年级数学应用题6

1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?

  2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?

  3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?

  4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?

  5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?

  6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?

  7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?

  8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?

  9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?

  10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?

  11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?

  12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?

  13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?

  14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?

  15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?

  16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?

  17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?

  18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?

  19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?

  20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?

六年级数学应用题7

1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?

  2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?

  3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?

  4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?

  5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?

  6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?

  7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?

  8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?

  9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?

  10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?

  11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?

  12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?

  13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?

  14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米?

  15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?

  16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?

  17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?

  18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?

  19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?

  20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?

六年级数学应用题8

1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?

  2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?

  3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?

  4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?

  5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?

  6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?

  7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?

  8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?

  9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?

  10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?

  11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?

  12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?

  13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?

  14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?

  15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?

  16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?

  17、牧场养牛480头,比去年养的多1/5,比去年多多少头?

  18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?

  19、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?

  20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?

六年级数学应用题9

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

  2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

  3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

  4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

  5、一种电脑原价6800元,现降价1700元,降价百分之几?

  6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

  7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

  8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

  9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

  10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

  11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?

  12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

  13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

  14、在100克水中,加入25克盐。这盐水的含盐率是多少?

  15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

  16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

  17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?

  18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

  19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

  20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

六年级数学应用题10

1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?

  2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?

  3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?

  4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?

  5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?

  6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?

  7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?

  8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的?

  9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?

  0、玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%。如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元?

  11、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?

  12、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?

  13一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?

  14、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

  15、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?

  16、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?

  17、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?

  18、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?

  19、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

  20、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?

一、用简便方法计算下列各题。

1.437+998

2.372-199

3.0.125×3.7×8

4. 2.5×13×40

5. 0.25×(0.4+4)

6. 5-59 -49

7. 87 ×36×78

8. 28×23 +2×23

9. (15+52 )×52

10. 57 +56 +27 +16

11. 25 ×99+25

12. (35 -12 )×53

13. 25 ÷3+35 ×13

14. 13 ÷49 +13 +14

15. 3-35 ×521 -67

16. 29 +12 ÷45 +38

二、计算下面各题。

1.25 +27 ÷37

2. 8×3.4+3.6÷0.6

3. 2-815 ×916

4. 0.3×7.5-0.375×2

5. 25 ×43 +15 ÷34

6. 34 ÷(1-12 -14 )

7. (12 -38 )÷34

8. 10÷59 +19 ×6

9. 79 ÷135 +29 ×513

10. (12 +17 -712 )÷17

11. 3÷0.01+40×0.5

12. (14 +45 )÷73 +710

1.78 ×34 +14 ×78

2.23 +13 ÷23

3. 20-18 ×45

4. 2.2×3.7+6.3×2.2

5. (45 -23 )×154

6. 114 ×(14 +112 )

7. [1-(38 +14 )]÷14

8. 65 ×(23 +32 )÷85

9. 67 ÷[(47 -12 )×25 ]

10. [1-(13 +115 )]÷45

二、文字题。(用综合算式解答)

1. 12 减去18 的差乘35 ,积是多少?

2.1减去4的16 ,所得的差再除35 ,商是多少?

3.0.8乘1.25的积,加上21除以4.2的商,得多少?

4. 45 乘4的倒数,所得的积比12 少多少?

5.25 加上8个15 的和,被13 除,商是多少?

6.910 减去13 除320 的商,所得的差与59 相乘,结果是多少?

文章版权及转载声明

作者:admin本文地址:http://my9888.com.cn/post/68.html发布于 2020-10-05
文章转载或复制请以超链接形式并注明出处9888美文网

阅读
分享