七年级数学应用题及答案
一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。
2、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车,乙组步行。车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。
设甲的速度为x,乙的速度为y
80x+80y=400
80y-80x=400
所以x=0 y=5(这道题时间为80秒与实际不符)
3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y
那么[x-4*(18-x-y)/60]/4=(18-y)/60
y/4=(18-x)/60+(18-x-y)/60
所以x=2 y=2
A点距离北山为2km
3. 牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?
设胜x场,负y场,则平11-x-y场
x=4y
3x+11-x-y=25
x=8
y=2
胜8场,负2场,平1场
4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?
设原来有x组。所以人数是8x
(x-2)12=8x
x=6
共有48人。
5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?
设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可知,从A地到B地逆风,从B地到A地顺风。可列方程:
x+y=4/5.2
x-y=4/6.5
解得:x=9/13,y=1/13
6.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?
5*(1/3)+5*X=15*X
x=1/6
6. 一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?
设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:
(1/3)x/12=(1/3)x/[12*(5/4)]+1
化简得:
(5/3)x=(4/3)x+60
(1/3)x=60
x=180
所以麦地有180公顷.
7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答
解:设每分为X
2X+5X=14000
7X=14000
X=2000
2X=4000
5X=10000
所以甲分到4000元,乙分到10000元
8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.
请列方程解应用题
设票价为x元
x+(35-20)*1.5%x=1323 x=1080
(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.
9.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?
解:设这两件商品售价都为x元
因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x
售价为,x+x=2x
32/15x>2x 即进价>售价
所以亏损
10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。
回答者:闪兰 - 见习魔法师 二级 3-9 21:35
评价已经被关闭
回答者:于安乾 - 一派掌门 十三级 7-29 15:00
某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
1.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
2.
某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
解:租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
3.将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
4.甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
5.粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437
7.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
解:设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)
8.a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲
设乙出发x小时后追上甲,列方程
12(X+1)=28X X=0.75小时,即45分钟
求七年级下数学证明题10道
北京市西城区2007—2008学年度第二学期抽样测试
七年级数学试卷
A卷满分100分
一、精心选一选(共10个小题,每小题30分)
在下列各题的四个备选答案中,只有一个是正确的,请把正确结论的代号写在题后的括号内。
1.计算的结果是()。
A.B.C.D.
2.不等式的解集在数轴上表示正确的是()。
3.已知三角形的两边的长分别为2cm和7cm,设第三边的长为,则的取值范围是()。
A.B.C.D.
4.若,则下列不等式中错误的是()。
A.B.C.D.
5.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()。
A.同位角相等,两直线平行
B.两直线平行,同位角相等
C.内错角相等,两直线平行
D.两直线平行,内错角相等。
6.在下面四种正多边形的瓷砖中,用同一种瓷砖能镶嵌成一个平面图案的是()。
7.2008年5月4日,北京奥运圣火传人海南省三亚市,这是“祥云”火炬在境内传递的第一站.传递路线为:三亚—五指山—万宁—海口.如图,某校学生小红在海南省地图中用(-2,-1)表示火炬传递起点三亚市,用(-1,0)表示五指山,那么火炬传递终点海口市的位置可以表示为().
A.(3,4)B.(4,5)C.(4,2)D.(2,4)
8.下面的统计图分别反映的是甲、乙两班全体学生喜欢四种球类运动的情况,根据统计图,下列对喜欢乒乓球运动的人数占全班总人数的百分比做出的判断中,正确的是().
A.甲班大,乙班小B.甲班小,乙班大
C.甲班、乙班一样大D.无法确定哪个班大
9.如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好,,则∠D的度数为().
A.70°B.75°C.80°D.85°
10.如图,正方形ABCD与正方形EFGH的边长分别为、,若C与G重合,F在BC的延长线上,H在DC的延长线上,则△BDE的面积为().
A.B.
C.D.
二、细心填一填(共8个小题,每小题3分,共24分)
11.把命题“对顶角相等”改写为“如果……,那么……”的形式:________________。
12.的与3的差是负数,用不等式表示为_______________。
13.如图,AD‖BC,点E在BD的延长线上,若∠ADE=130°,则∠DBC的度数为________。
14.一个多边形的内角和为900°,这个多边形为__________°。
15.若已知点P(,)在轴上,则点P到原点的距离是________。
16.如图,每个小正方形的边长为1cm,蚂蚁从A点沿正方形的网格线,经过C点,爬到B点的最短路程是_____cm。
17.王强同学解方程组时,求得方程组的解为由于不慎,将一些墨水滴到了作业本上,刚好遮住了处和处的数,那么处表示的数应该是________,处表示的数应该是______。
18.△ABC中,∠B=20°,AD为BC边上的高,若∠DAC=30°,则∠BAC的度数为__________。
三、认真做一做(共5个小题,每小题6分,共30分)
19.先化简,再求值:
,其中。
20.解方程组:
21.解不等式组:
22.如图,在四边形ABCD中,AB‖CD,点E、F分别在AD、BC边上,连结AC交EF于G,∠1=∠BAC。
(1)求证:EF‖CD;
(2)若∠CAF=15°,∠2=45°,∠3=20°,求∠B和∠ACD的度数。
23.某校学生会要了解本校七年级学生周末进行体育锻炼的情况.在确定调查方式时,甲同学说:“我去七年级2班调查全体学生”;乙同学说:“我去七年级每个班随机调查一定数量的学生”;丙同学说:“我去市少年体育活动中心调查参加体育锻炼的学生”.
(1)请你指出在以上三种调查方式中,哪位同学的调查方式最为合理?
(2)该校学生会采用了最为合理的调查方式收集数据,并绘制了不完整的频数分布表和频数分布直方
图。
请你根据图表提供的信息,写出、的值,并补全频数分布直方图;
(3)若该校七年级共有300名学生,请你估计在周末进行体育锻炼的时间少于1小时的学生人数,并根据调查情况向同学们提出一条建议.
四、解答题(共2个小题,每小题6分,共12分)
24.如图,将△ABC向右平移3个单位长度,然后再向上平移2个单位长度,可以得到△。
(1)画出平移后的△;
(2)写出△三个顶点的坐标;
(3)已知点P在x轴上,以、、P为顶点的三角形面积为4,求P点的坐标。
25.某住宅小区将要举办“迎奥运”知识竞赛,物业的工作人员在购买奖品时,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)物业公司公布本次活动奖品发放方案如下:
一等奖二等奖三等奖
1盒福娃和1枚徽章1盒福娃1枚徽章
如果在这次活动,用于购买奖品的总费用不少于1500元但不超过1600元,设一、二、三等奖共20名,其中一等奖2名,那么二等奖和三等奖应各设多少名?
五、解答题(本题4分)
26.△ABC中,AB=2,BC=4,CD⊥AB于D。
(1)如图①,AE⊥BC于E,求证:CD=2AE;
(2)如图②,P是AC上任意一点(P不与A、C重合),过P作PE⊥BC于E,PF⊥AB于F,求证:2PE+PF=CD;
(3)在(2)中,若P为AC的延长线上任意一点,其它条件不变,请你在备用图中画出图形,并探究线段PE、PF、CD之间的数量关系。
B卷本卷满分20分
六、归纳与猜想(本题6分)
27.观察下面给出的图形,探究图形中的点的个数变化规律,并填表:
图形第1个第2个第3个第4个第5个…第n个
点的个数159…
七、解答题(本题7分)
28.在平面直角坐标系中,已知轴上两个点,分别在原点两侧,且A、B两点间的距离小于7个单位长度。
(1)求的取值范围;
(2)C是AB的中点且为整点(横、纵坐标都为整数的点叫做整点),若D为整点,当△BCD为等腰直角三角形时,求出点D的坐标。
八、解答题(本题7分)
29.△ABC中,∠BAC=∠ACB。
(1)如图,E是AB延长线上一点,连结CE,∠BEC的平分线交BC于
点D,交AC于点P。
求证:;
(2)若E是射线BA上一点(E不与A、B重合),连结CE,∠BEC的平
分线所在直线交BC于点D,交CA所在直线于点P。
∠CPD与∠BCE有什么关系?请画出图形,给出你的结论,并说明理由。
北京市西城区2007—2008学年度第二学期抽样测试
七年级数学试卷参考答案及评分标准
A卷(达标卷)满分100分
一、精心选一选(共10个小题,每小题3分,共30分)
1、A2、C3、C4、D5、A6、B7、D8、B9、C10、D
二、细心填一填(共8个小题,每小题3分,共24分)
11.如果两个角是对顶角,那么这两个角相等;
12.;13.50;14.七;15.7;16.8;
17.10,2;(第一个空1分,第二个空2分)
18.40°或100(只写出一个结果得1分)
三、认真做一做(共5个小题,每小题6分,共30分)
19.先化简,再求值:
,其中。
解:
…………3分
…………4分
当时,原式=。……6分
20.解方程组:
解:由①,得③……………………1分
把③代入②,得,
解这个方程,得。………………3分
把代入③,得。………5分
所以这个方程组的解是…………6分
21.解不等式组:
解:解不等式①,得
………………2分
解不等式②,得,
………………4分
所以不等式组的解集是…………6分
22.证明:
(1)∵∠1=∠BAC,
∴AB‖EF。………………2分
∵AB‖CD,
∴EF‖CD。………………3分
(2)∵AB‖EF,
∴∠B+(∠2+∠3)=180°。
∵∠2=45°,∠3=20°,
∴∠B=115°。………………4分
∵∠1=∠CAF+∠3,且∠CAF=15°,
∴∠1=35°。
∵EF‖AB,
∴∠ACD=∠1=35°。………………6分
23.解:(1)乙同学提出的方案最为合理;………………1分
(2),,……………………………………3分
频数分布直方图如图②所示;……………………4分
(3)165人,……………………………………………5分
建议:略。…………………………………………6分
阅卷说明:提出的建议,只要言之有理(有加强体育锻炼相关内容)都可给分。
四、解答题(共2个小题,每题6分,共12分)
24.解:(1)如图③:………………1分
(2);………4分
(3)因为,
所以,
所以
因为
所以(0,0)或(4,0)………………6分
25.解:(1)设一盒“福娃”为x元,一枚徽章为y元。…………1分
依题意,得………………2分
解这个方程组,得
答:一盒“福娃”120元,一枚徽章10元…………3分
(2)设二等奖m名,则三等奖(20-2-m)名。
依题意,得…………4分
解得。…………5分
根据题意,应是整数,
所以,。
答:二等奖10名,三等奖8分。…………6分
五、解答题(本题4分)
26.
证明:(1)△ABC中,
∵,,
∴。
∵,,
∴………………1分
(2)连结PB(见图⑤),…………2分
△ABC中,
∵,
∴
∵,,
∴…………3分
(3)如图⑥,
结论:;………………4分
阅卷说明:在(3)中只画图无结论或只有结论未画图者,均不得分。
B卷(提升卷)本卷满分20分
六、归纳与猜想(本题6分)
27.
图形第1个第2个第3个第4个第5个…第n个
点的个数1317…
阅卷说明:第1个空1分;第2个空2分;第3个空3分。
七、解答题(本题7分)
28.解:(1)因为A(,0),B(4,0),A、B位于原点两侧,
所以。…………1分
因为,,
所以
所以。…………2分
所以
解得
所以的取值范围是…………3分
(2)依题意,为整点,
则为整数。
由(1),
所以。
所以,。
当△BCD为等腰直角三角形时,整点D有四个,
它们是:(1,3),(4,3),(1,-3),(4,-3)。………………7分
八、解答题(本题7分)
29.(1)证明:∵EP是平分∠BEC,
∴∠BEP=∠CEP。
△ACE中,
∠A+∠ACE+∠AEC=180°。
∵∠ACE=∠ACB+∠BCE,且∠CAB=∠ACB,
∴2∠A+2∠BEP+∠BCE=180°。
∴
∵∠CPE=∠A+∠BEP,
∴………………2分
(2)结论:…………3分
理由:设∠CAB=∠ACB=,
∵ED平分∠BEC,
∴∠BED=∠CED.
设∠BED=∠CED=,∠BCE=.
分两种情况:
i)若点E在BA上(E不与A、B重合,如图⑨,
∵∠ACE=∠ACB-∠BCE,
∴∠ACE=.
∵∠CEB=∠BAC+∠ACE,
∴,
∴
∵∠CPD=∠CED-∠ACE,
∴∠CPD=
∴
∴………………5分
ii)若E在BA的延长线上,如图⑩,
∵∠ACE=∠BCE-∠ACB,
∴∠ACE=。
∵∠CAB=∠CEA+∠ACE,
∴,
∴
∴∠CPD=∠ACE+∠CEP,
∴∠CPD=
∴
∴………………7分。
综上,
说明:学生的其它正确解法参照评分标准相应给分。
2007—2008年度第二学期抽样测试
七年级数学试卷分析
一、试卷结构:本次测试分A卷和B卷两部分。
A卷注重落实基本知识,满分100分,共26个题。
B卷注重考查知识的拓展和数学思想方法的渗透
满分20分,共3个题,有一定的难度。
二、试卷内容分布:
本学期所学知识内容相对较多且相对基础,为后续的学习提供辅助作用。本测试包含了七年级下数学教学教材中的所有内容。具体来说,A+B卷满分120分,其中代数部分内容包括:二元一次方程(组);不等式(组);平面直角坐标系;数据的收集、整理和描述;整式的乘除法等。其计约68分。
几何部分内容相对较少,包括:平行线和相交线;三角形和多边形,两个部分共计52分。可见几何知识内容虽少,但更易考察其数学技能。
三、试卷特点:
本次测试卷知识覆盖面广,试题大多来源于教材上例题、习题的改编和拓展,特别注重了对基本知识,即应知社会知识点的考查,同时也有对基本数学思想方法如数形结合,分类讨论的数学思想方法的考查。这些数学思想方法的考查,提升上试卷的水平、层次,也提升了试卷的区分度,从测试结果来看,本试卷在100分钟内完成,A卷得87分,B卷得13分或总分在100分左右,那么说明对本段知识的落实比较到位,甚或优秀之列。
四、试题分析:
1.考查幂的运算法则。
2.考查利用数轴直观地表示不等式的解集。
3.考查三角形的三边不等关系定理或者构成三角形的条件。
4.考查不等式的基本性质。
5.考查平行线判定定理的应用。
6.考查用同一种正多边形进行平面镶嵌的条件,即正多边形的内角度数是360°的约数。
7.考查用有序数对确定平面上点的位置或平面上的点与有序数对的一一对应关系。
8.考查统计图表(直方图和扇形图)在描述数据中相互对应关系的比较。
9.考查数学实验与操作,来自于严密的几何推理作依据。
10.考查用割补法求图形的面积及整式的混合运算是一道综合题。
11.考查命题的结构:分清题设和结论。
12.考查用数学符号表示不等关系。
13.考查平行线的性质。
14.考查多边形的四角和公式。
15.考查坐标轴上的点的坐标特点及点到坐标轴的距离。
16.考查图形的平移在给定条件的实验与操作。
17.考查方程组的解的应用。
18.考查数学思维的严密性,几何作图在分类讨论思想方法中的应用。
19.考查整式的乘法和乘法公式。
20.落实基本知识、解方程组。
21.落实基本知识,解不等式组。
22.落实基本知识,简单的几何推理和计算。
23.落实基本知识点,考查识别数分布直方图,在现实生活中的应用。
24.考查用坐标表示平移及已知坐标平面上,三角形的面积,求相关顶点的坐标,注意思维的严密和
数形结合思想方法的渗透。
25.方程组和不等式组在实际生活的应用。
26.层层递进,考查面积变换在几何证明和探究中的应用。此题三个设问的解决,层层递进很好地体
现了数学思维的拓展和延伸,是一道很好地用于检验数学思维能力的试题。
B卷:
27.考查数学的基本认识方法,即从特殊到一般、从简单到复杂的认知方法:归纳、猜想、验证。
28.考查不等式的应用和阅读理解的能力。通过数形结合,实验操作地数学概念完全理解地去实验操
作。
29.考查三角形内角和是180°的定理。在处理较复几何图形中的应用。此题分两问,层层探究、
动态、条件、画图、猜想结论。而验证过程中,动点位置变化但两问所用方法一改。此题有一定
难度,应当学会用代数方法去解释论证,几何命题。
总结:此试卷基础题多,运算量大,考查知识点较灵活。考查中,总体而言,80分易得而110分以上较难。具有较好的区分度。
对于基本功相对薄弱的学生而言,时间比较紧张。
此试卷是一份很好体现新课标理念的试卷。
七年级上册书(数学)主要有什么内容
封面
第一章 有理数
1.1 正数和负数
阅读与思考 用正负数表示加工允许误差
1.3 有理数的加减法
实验与探究 填幻方
阅读与思考 中国人最先使用负数
1.4 有理数的乘除法
观察与思考 翻牌游戏中的数学道理
1.5 有理数的乘方
数学活动
小结
复习题1
第二章 整式的加减
2.1 整式
阅读与思考 数字1与字母X的对话
2.2 整式的加减
信息技术应用 电子表格与数据计算
数学活动
小结
复习题2
第三章 一元一次方程
3.1 从算式到方程
阅读与思考 “方程”史话
3.2 解一元一次方程(一)——合并同类项与移项
实验与探究 无限循环小数化分数
3.3 解一元一次方程(二)——去括号与去分母
3.4 实际问题与一元一次方程
数学活动
小结
复习题3
第四章 图形认识初步
4.1 多姿多彩的图形
阅读与思考 几何学的起源
4.2 直线、射线、线段
阅读与思考 长度的测量
4.3 角
4.4 课题学习 设计制作长方体形状的包装纸盒
数学活动
小结
复习题4
部分中英文词汇索引